skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mason, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In area-selective processes, such as area-selective atomic layer deposition (AS-ALD), there is renewed interest in designing surface modification schemes allowing to tune the reactivity of the nongrowth (NG) substrates. Many efforts are directed toward small molecule inhibitors or atomic layers, which would modify selected surfaces to delay nucleation and provide NG properties in the target AS-ALD processes allowing for the manufacturing of smaller sized features than those produced with alternative approaches. Bromine termination of silicon surfaces, specifically Si(100) and Si(111), is evaluated as a potential pathway to design NG substrates for the deposition of metal oxides, and TiO2 (from cycles of sequential exposures of tetrakis-dimethylamido-titanium and water) is tested as a prototypical deposition material. Nucleation delays on the surfaces produced are comparable to those on H-terminated silicon that is commonly used as an NG substrate. However, the silicon surfaces produced by bromination are more stable, and even oxidation does not change their chemical reactivity substantially. Once the NG surface is eventually overgrown after a large number of ALD cycles, bromine remains at the interface between silicon and TiO2. The NG behavior of different crystal faces of silicon appears to be similar, albeit not identical, despite different arrangements and coverage of bromine atoms. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. As the size of the components in electronic devices decreases, new approaches and chemical modification schemes are needed to produce nanometer-size features with bottom-up manufacturing. Organic monolayers can be used as effective resists to block the growth of materials on non-growth substrates in area-selective deposition methods. However, choosing the appropriate surface modification requires knowledge of the corresponding chemistry and also a detailed investigation of the behavior of the functionalized surface in realistic deposition schemes. This study aims to investigate the chemistry of boronic acids that can be used to prepare such non-growth areas on elemental semiconductors. 4-Fluorophenylboronic acid is used as a model to investigate the possibility to utilize the Si(100) surface functionalized with this compound as a non-growth substrate in a titanium dioxide (TiO2) deposition scheme based on sequential doses of tetrakis(dimethylamido)titanium and water. A combination of X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry allows for a better understanding of the process. The resulting surface is shown to be an effective non-growth area to TiO2 deposition when compared to currently used H-terminated silicon surfaces but to exhibit much higher stability in ambient conditions. 
    more » « less
  3. ABSTRACT Climate change and an increase in endangered species, are examples of technological advances negatively impacting the environment. As technology demands increase, an earnest effort to reduce the environmental impact of processing and manufacturing related activities is critical. From a business perspective, minimizing or removing toxic process chemicals is a high impact area that can increase work environment safety and decrease waste management costs. This work presents processing considerations when transitioning to greener alternative polymer resist solvents, for applications in nanomanufacturing with sustainability considerations. Within government contracting, process modifications that change product form, fit, or function require qualification and at minimum justification. This work presents the conversion from a chlorobenzene to anisole based solvent using a 495 kMW polymetheyl methacrylate polymer resin, without impacting form fit or function of the intended device. Resist conversion is of interest as the difference in the substituents of the two solvents, impact the effective toxicity of the polymer resists. Specifically, the oral median lethal dose (LD 50 ) in rats for chlorobenzene is 1110 mg/kg, while anisole is 3700 mg/kg. Therefore, developing a process utilizing anisole and replacing chlorobenzene addresses safety concerns and contributes to green initiatives worldwide. Within this work electron beam lithography fabricated transistor components consisting of a double layered source, and gate were converted from a chlorobenzene to anisole based process; while maintaining process of record specifications. The purpose of this work is to provide a starting platform for individuals seeking to convert from a chlorobenzene solvent to an anisole based resist for sub-micron lithography steps. 
    more » « less